
COMPLEX ANALYSIS

TOPIC IX: THE COMPLEX EXPONENTIAL FUNCTION

PAUL L. BAILEY

1. Exponentiation

We have yet to thoroughly investigate the meaning of exponentiation of complex
numbers; that is, how do we define az, where a, z ∈ C?

1.1. When z is an integer. At this point, we can confidently state that the first
three properties we obtain for ax when a is real and n = x is an integer are carried
over to the case of complex base, and for the same reasons.

If n ∈ N, we define

(a) an means a multiplied with itself n times;
(b) a0 = 1;

(c) a−n =
1

an
.

1.2. When z is rational. Consider the real function f : [0,∞) → [0,∞) given
by f(x) = xn, where n is a positive integer with n ≥ 2. This function is bijective,
with inverse function f−1(x) = n

√
x. So, when a is real and positive, there exists a

unique positive b ∈ R such that bn = a, and we define n
√
a = b.

The situation is not so clear for a ∈ C. If a is complex and nonzero, we know
a has n distinct nth roots. In order to define a function and nth root function,
we must choose a preferred nth root in a consistent manner. This can be done by
taking the nth root with the smallest positive angle among all the nth roots.

Let z ∈ C, and set r = |z| and θ = Arg(z) if z 6= 0, and θ = 0 if z = 0. Recall
that Arg(z) ∈ (−π, π], so that z = r cis θ in a unique way. Define

n
√
z = n

√
r cis

( θ
n

)
.

Set D = {z ∈ C | 0 ≤ Arg(z) <
2π

n
}. The function

f : D → C given by f(z) = zn

is bijective, with inverse

g : C→ D given by g(z) = n
√
z.

Getting back to our question, “what is az”, we define this in the case that z =
m

n
,

where m,n ∈ Z, by

az = am/n = n
√
am.

For n = 2, we note that anything of the form ± 2
√
a is a square root of a. However,

for larger n, anything of the form cis
(2πk

n

)
n
√
a is an nth root of a.
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2. Definition of the Exponential Function

Recall the function

cis : R→ C given by cis(θ) = cos θ + i sin θ.

Using power series, we gave a justification for Churchill’s use of the notation eiθ

to mean cis θ. If we wish to define ez, where z = x+ iy, we use a standard property
of exponentiation to write

ex+iy = exeiy = ex cis y.

This motivates the following definition. Let C∗ = Cr {0}.

Definition 1. Define the (complex) exponential function by

exp : C→ C∗ by exp(x+ iy) = ex cis(y).

Proposition 1. The domain of exp is C, and the range is C∗.

Proof. Clearly, any z = x+ iy can be plugged into the definition exp(z) = ex cis y,
so the domain of exp is C. Since | exp(z)| = ex > 0, exp(z) is never zero, for any
z. However, if w 6= 0, then w = r cis θ for some r, θ ∈ (0,∞). Set x = log(r) and
y = θ to see that exp(z) = elog r cis(y) = r cis θ = w. Thus exp is into and onto
C∗ = Cr {0}. �

For purely real z, we have z = x+ iy with y = 0, so exp(z) = ex cis 0 = ex; thus
exp agrees with the real exponential function for real values of z.

The definition of exp appears in polar form in the range. In rectangular form,

exp(x+ iy) = u(x, y) + iv(x, y),

where
u(x, y) = ex cos y and v(x, y) = ex sin y.

Proposition 2. The function exp is entire, with

d

dz
exp(z) = exp(z).

Proof. We apply the converse of the Cauchy Riemann equations.

ux = ex cos y vx = ex sin y

uy = −ex sin y vy = ex cos y

The partials are continuous, and the Cauchy Riemann equations are satisfied. Thus
the derivative exists are each point z = x+ iy ∈ C, and

d

dz
exp(z) = ux(x, y) + ivx(x, y) = ex cos y + iex sin y = ex cis y = exp(z).

�
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3. Algebraic Properties of the Exponential Function

Proposition 3. Let z1, z2 ∈ C. Then

exp(z1 + z2) = exp(z1) · exp(z2).

Proof. Let z1 = x1 + iy1 and z2 = x2 + iy2. We have

exp(z1 + z2) = exp((x1 + x2) + i(y1 + y2))

= ex1+x2 cis(y1 + y2)

= ex1ex2 cis(y1) cis(y2)

= ex1 cis(y1)ex2 cis(y2)

= exp(z1) exp(z2).

�

Proposition 4. Let z ∈ C and n ∈ N. Then

(exp(z))n = exp(nz).

Reason. This follow from Proposition 3 and induction. �

The reader who has experience with the concept of groups will see that

exp : C→ C∗

is a group homomorphism, from the additive group of complex numbers, to the
multiplication group of nonzero complex numbers.

When restricted to the reals,

exp : R→ (0,∞)

is a group isomorphism from the additive group of real numbers to the multiplicative
group of positive real numbers; this is because exp is injective on the reals. The
inverse function is the natural logarithm,

log : (0,∞)→ R.
However, the complex exponential function is far from injective; indeed, every

point in the range has infinitely many preimages. It is this fact that makes complex
logarithms a much deeper topic than it had been for the reals.
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4. Mapping Properties of the Exponential Function

We investigate the mapping properties of the exponential function.

Proposition 5. The exponential function satisfies these properties.

(a) lim
Re z→+∞

exp(z) =∞;

(b) lim
Re z→−∞

exp(z) = 0.

Proof. First, we note that, for z = x+ iy,

| exp(z)| = | exp(x+ iy)| = |ex cis(y)| = |ex|| cis(y)| = |ex| · 1 = ex.

For (a), we understand the meaning to be that as the real part of z tends to
+∞, the magnitude of exp(z) also tends to +∞. But this is certainly the case,
since

lim
x→+∞

| exp(x+ iy)| = lim
x→+∞

ex = +∞.

For (b), we understand the meaning to be that as the real part of z tends to
−∞, the magnitude of exp(z) also tends to 0. But this is also the case, since

lim
x→−∞

| exp(x+ iy)| = lim
x→−∞

ex = 0.

�

Definition 2. A complex function f : D ⊂ C → C is periodic if there exists a
complex number T ∈ C, with T 6= 0, such that

f(z + T ) = f(z)

for all z ∈ D. We say that T is a period of the periodic function if f(z + T ) = f(z)
for all D in D, and is not the case that f(z + aT ) = f(z) for all D in D, for any
0 < a < 1.

Proposition 6. The exponential function satisfies these properties.

(a) exp is periodic with period 2πi;
(b) exp sends horizontal lines to rays from the origin;
(c) exp sends vertical lines to circles centered at the origin.

Proof. For (a), note that

exp(z + 2πi) = exp(x+ i(y + 2π)) = ex cis(y + 2π) = ex cis y.

Moreover, it is clear that 2πi is the smallest multiple of i for which this is true.
For (b), let L be the horizontal line with equation y = φ, where φ is fixed.

The image of this line is the set with equation ex cisφ. Since ex is increasing and
its image is (0,∞), we see that this equation has the same locus as the equation
Arg z = φ, which is a ray with angle φ which excludes the origin. The mapping of
each line is injective, but each ray is the image of an infinite number of lines.

For (c), let L be a vertical line with equation x = ρ, where ρ is fixed. The
image of this line is the set with equation eρ cis y. The locus of this equation is a
circle, centered at the origin, with radius eρ. Each circle is the image of exactly one
vertical line, but each point on a circle has an infinite preimage on the line. �
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5. The Principle Logarithm

Recall that we have indicated that arg z can be taken to mean any angle θ,
arg z = θ, such that z = |z| cis θ. Then arg z is not a well-defined function. To
make a function, we defined the principal argument to be a function

Arg : C∗ → R defined by Arg z = θ ∈ (−π, π] with z = |z| cis θ.

Similarly, we wish to let log z denote any complex number w with the property
that exp(w) = z. In order to make a function of this, we must restrict the domain
of exp to one on which exp is injective. For the rest of this section, if ρ ∈ R, let
Log ρ denote the (real) natural logarithm of ρ.

Let D = {z ∈ C | −π < Im(z) < π} and let C+ = Cr (−∞, 0]. Restriction gives
a function

Exp : D → C+ given by Exp(z) = exp(z).

Then Exp is bijective, and so it has an inverse function. To investigate this, let
w ∈ D and suppose Exp(w) = z, where w = u+ iv. Then

|z| cis(Arg(z)) = z = Exp(w) = eu cis v,

we have |z| = eu, so that u = Log(|z|), and v = Arg(z).
Define the principal logarithm to be the function

Log : C+ → D given by Log(z) = Log |z|+ iArg(z).

Then

Exp(Log(z)) = Exp(Log |z|+ iArg(z)) = eLog |z| cis(Arg(z)) = |z| cis(Arg(z)) = z.

Similarly,

Log(Exp(w)) = Log(eRew cis(Imw)) = Log |eRew|+ i Imw = Rew + i Imw = w.

Thus, Log is the inverse of Exp.
We note that it is impossible to define Log on C∗ such that Log is continuous;

for suppose that for z a negative real number, we defined Log(z) = Log |z| + iπ.
Then, Log is not continuous at z; every neighborhood of z contains points with
negative imaginary parts, whose principle argument is negative, and thus not near
π. We prefer to take Log as an function which is differentiable in its open domain.
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6. Branches of Argument and Logarithm

Recall that we have indicated that arg z can be taken to mean any angle θ,
arg z = θ, such that z = |z| cis θ. This leaves us in a state such that arg z is
not a well-defined function. Similarly, we wish to let log z denote any complex
number w with the property that exp(w) = z, but this “function” is again not well-
defined, in that there is more than one complex value it could represent. In order to
create well-defined functions, we established the principle values of argument and
logarithm. However, there are occasions where the other possible values should also
be considered; we wish to formalize this situation of “multi-valued functions”. We
could take the approach that log is a function which takes values in the power set
of C, by setting log(z) = {w ∈ C | exp(w) = z}, so that log(z) is the fiber over z
under the exponential map. However, the notion of branches suits us better.

Definition 3. Let A ⊂ C. We say that A is disconnected if there sets U, V ⊂ C
such that

(a) U and V are open;
(b) A ∩ U 6= ∅ and A ∩ V 6= ∅;
(c) U ∩ V = ∅.

We say that A is connected if it is not disconnected.

Definition 4. Let D be an open connected subset of C.
A branch of argument on D is a continuous function

arg : D → R such that cis(arg(z)) =
z

|z|
.

A branch of logarithm is a continuous function

log : D → C such that exp(log(z)) = z.

Proposition 7. Let arg1 : D1 → R and arg2 : D2 → R be branches of argument.
Let D = D1 ∩D2. If D is connected, then there exists an integer k ∈ Z such that
for all z ∈ D,

arg2(z) = arg1(z) + 2πk.

Reason. Let z ∈ D, and let θ1 = arg1(z), θ2 = arg2(z). Now cis(θ1) = cis(θ2), so
θ2 = θ1 + 2πk for some k ∈ Z. We need to say why the same k works for all z ∈ D.

Continuous functions map connected sets to connected sets. The difference of

continuous functions is continuous. Thus
(arg2− arg1)

2π
(D) is a connected subset

of Z, and so is a point. Thus k must be constant, and does not depend on z. �

Proposition 8. Let log1 : D1 → R and log2 : D2 → R be branches of logarithm.
Let D = D1 ∩D2. If D is connected, then there exists an integer k ∈ Z such that
for all z ∈ D,

log2(z) = log1(z) + 2πki.

Proof. Let z ∈ D1 ∩ D2. Let log1(z) = x1 + iy1 and log2(z) = x2 + iy2. Then
exp(x1 + iy1) = z = exp(x2 + iy2), so ex1 cis y1 = ex2 cis y2, which implies that
x2 = x1 and y2 = y1 + 2πk for some k. Thus log2(z)− log1(z) = (x2 + iy2)− (x1 +
iy1) = i(y2 − y1) = 2πki. Since these function are continuous, k must be constant
throughout D1 ∩D2. �
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7. Branches of Inverse

Definition 5. Let U be an open subset of C and let f : U → C. A branch of
inverse of f is a continuous function g : D → U , where D is open and connected,
such that f(g(z)) = z for every z ∈ D.

It is now our mission to determine the analytic properties of branches of inverse;
in particular, if the original function is differentiable, then is its inverse? There are
a couple of loose ends we need to tie up before proceeding to the main theorem.

7.1. Loose Ends. We need to establish a few principles related to nonzero denom-
inators before proceeding to the differentiability of branches of inverse for complex
functions.

Recall the foundational limit laws. We have proved most of these in class. The
proofs mirror those for real functions.

Theorem 1. Let lim
z→z0

f(z) = L and lim
z→z0

g(z) = M . Then

• lim
z→z0

[f(z) + g(z)] = L+M ;

• lim
z→z0

[f(z)g(z)] = LM ;

• lim
z→z0

[f(z)

g(z)

]
=

L

M
, if M 6= 0.

These laws imply the following.

Proposition 9. Let lim
z→z0

f(z) = L and lim
z→z0

(f(z)g(z)) = N . If L 6= 0, then

lim
z→z0

g(z) =
N

L
.

Proof. We wish to write that g(z) =
f(z)g(z)

f(z)
for z near z0; however, this requires

that f is nonzero in a deleted neighborhood of z0. But since f(z)→ L as z → z0,

we know that if we select ε =
|L|
2

, then there exists δ > 0 such that 0 < |z−z0| < δ

implies |f(z)−L| < |L|
2

, so that |f(z)| > |L|
2

. So f is nonzero in this neighborhood

of z0.
Now from the third limit law,

lim
z→z0

g(z) = lim
z→z0

f(z)g(z)

f(z)
=
N

L
.

�

Proposition 10. Let D ⊂ C, f : D → C, and z0 ∈ D. If f is differentiable at z0
and f ′(z0) 6= 0, then there exists a deleted neighborhood U of z0 such that for all
z ∈ U , f(z) 6= f(z0).

Proof. Suppose that f ′(z0) = d and d 6= 0. Then lim
z→z0

f(z)− f(z0)

z − z0
= d. Thus

there exists δ > 0 such that 0 < |z− z0| < δ implies
∣∣∣f(z)− f(z0)

z − z0
− d
∣∣∣ < ∣∣∣d

2

∣∣∣. This

implies that
∣∣∣f(z)− f(z0)

z − z0

∣∣∣ > ∣∣∣d
2

∣∣∣, so |f(z)− f(z0)| > |z − z0|
∣∣∣d
2

∣∣∣. The quantity on

the right is positive, so f(z) 6= f(z0). �
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7.2. The Main Theorem. We are now in a position to better understand the
proof of the main theorem regarding the differentiability of branches of inverse.

Theorem 2. Let U be an open subset of C and let f : U → C be differentiable. Let
g : D → U be a branch of inverse of f and let z0 ∈ D. If f ′(g(z0)) 6= 0, then g is
differentiable at z0, and

g′(z0) =
1

f ′(g(z0))
.

Thus, if f ′ 6= 0 in g(D), then g is analytic in D, and g′(z) =
1

f ′(g(z))
.

Proof. We begin by pointing out that, since f ′(g(z0)) 6= 0, there exists a deleted
neighborhood of z0 such that g(z) 6= g(z0) for all z in that deleted neighborhood.
For z inside such a neighborhood, we note that

1 =
z − z0
z − z0

=
f(g(z))− f(g(z0))

z − z0
=
f(g(z))− f(g(z0))

g(z)− g(z0)
· g(z)− g(z0)

z − z0
.

Now that limit on the left side as z → z0 is clearly 1, so the limit on the right side
exists. Since g is continuous, lim

z→z0
g(z) = g(z0), so

lim
z→z0

f(g(z))− f(g(z0))

g(z)− g(z0)
= f ′(g(z0)).

Hence we get that

lim
z→z0

g(z)− g(z0)

z − z0
exists, since f ′(g(z0)) 6= 0, and 1 = f ′(g(z0))g′(z0). Thus g′(z0) =

1

f ′(g(z0))
. �

Clearly Log is a branch of inverse of exp. Any branch of the inverse of exp is
called a branch of logarithm. We call Log the principle branch of logarithm. As a
consequence of the theorem above, we have

Corollary 1. ?? Let log : D → C be a branch of logarithm. Then

d

dz
log(z) =

1

z
.

Proof. Let f(w) = expw and g(z) = log(z). Then f(g(z)) = z, f ′(w) = f(w), and

g′(z) =
1

f ′(g(z))
=

1

f(g(z))
=

1

z
.

�
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8. Instances of Exponential with Base a

We are motivated by the desire to define wz using

wz = exp(log(wz)) = exp(z log(w)).

Since we have multiple choices for log, we are confronted with the realization that
fixing w and allowing z to vary is distinctly different from fixing z and allowing w
to vary.

Definition 6. Let a ∈ C∗. An instance of exponential with base a is a function

expa : C→ C of the form expa(z) = exp(bz),

where exp(b) = a.

Proposition 11. Let expa be an instance of exponential with base a, given by
expa(z) = exp(bz), where exp(b) = a. Then

d

dz
expa(z) = b expa(z).

Proof. This follows from the chain rule. �

Let expa be an instance of exponential with base a, given by expa(z) = exp(bz),
where exp(a) = b. It is important to explore the extent to which this definition
depends on the choice of b; to do this, let b1, b2 ∈ C such that exp(b1) = exp(b2) = a.
Write b1 = x1 + iy1 and b2 = x2 + iy2. Then ex1 cis y1 = ex2 cis y2. This implies
that x2 = x1 and y2 = y1 + 2πk, for some k ∈ Z. Now if z = x + iy, we compute
that (for j = 1, 2),

exp(bjz) = exxj−yyj cis(xyj + yxj).

Thus

exp(b1z) = exx1−yy1 cis(xy1 + yx1)

= exx2−yy2+2πyk cis(xy2 + yx2 + 2πxk)

= e2πyk exp(b2z).

So, the ratio between the instances of exponential with base a depends on the
imaginary part of z.

Definition 7. The principal instance of expa is

Expa : C→ C of the form Expa(z) = exp(z Log(a)).

Unless otherwise indicated, we assume az is given by az = Expa(z). Accordingly,
we note that

ez = exp(z).
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9. Branches of Power with Exponent a

If log is a branch of logarithm whose domain contains a, then log(a) = b, and
expa(z) = exp(z log(a)), as we defined for real functions. Instances of exponential
require selection of a single preimage of b under exp. As z varies, we may keep the
same value for b. Power functions are more subtle in this regard.

Definition 8. Let a ∈ C∗ and let D be an open connected subset of C. A branch
of power with exponent a is a function

powa : D → C given by powa(z) = exp(a log(z)),

where log : D → C is a branch of logarithm.

Proposition 12. Let powa : D → C be a branch of power with exponent a 6= 0,
with powa(z) = exp(a log(z)) for some branch of logarithm log : D → C. Then

d

dz
powa(z) = apowa−1(z),

where powa−1 : D → C is the branch of power with exponent a − 1 given by
powa−1(z) = exp((a− 1) log(z)).

Proof. We have

d

dz
powa(z) =

d

dz
exp(a log(z)) by definition

= exp(a log(z)) · a ·
(1

z

)
by the Chain Rule

= a exp(a log(z)) exp
(

log
(1

z

))
by properties of Log

= a exp(a log(z)− log(z)) by properties of exp

= a exp((a− 1) log(z))

= a expa−1(z)

�

Although we wish to think of zw to be a distinct number, we are confronted with
the realization that there are choices to be made. Normally, the power function is
more useful in deciding how to choose a meaning for zw.

Definition 9. Let a ∈ C∗. The principal branch of za is

Powa : C+ → C given by Powa(z) = Exp(aLog(z)).

According to this convention, it is clear that

d

dz
za = aza−1.

It should be noted that Expa(z) = Powz(a).
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10. Trigonometric Functions

We wish to motivate our definitions for sin and cos. We have discussed why
eiθ = cis(θ) = cos θ + i sin θ. Since sin is an odd function, e−iθ = cos θ − i sin θ.

Adding these equations gives eiθ+e−iθ = 2 cos θ, so cos θ =
1

2
(eiθ+e−iθ). Similarly,

sin θ =
1

2i
(eiθ − e−iθ). This motivates the following definition.

Definition 10. The extended trigonometric functions are

sin : C→ C given by sin z =
exp(iz)− exp(−iz)

2i
,

and

cos : C→ C given by cos z =
exp(iz) + exp(−iz)

2
.

We also define

tan z =
sin z

cos z
, cot z =

cos z

sin z
, sec z =

1

cos z
, and csc z =

1

sin z
.

These extensions of the standard trigonometric functions obey the same identities
and derivative rules as their real counterparts. They admit have branches of inverse,
which may be written using branches of logarithm.

11. Hyperbolic Functions

Definition 11. The extended hyperbolic functions are

sinh : C→ C given by sinh z =
exp(z)− exp(−z)

2
,

and

cosh : C→ C given by cosh z =
exp(z) + exp(−z)

2
.

We also define

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z
, sech z =

1

cosh z
, and csch z =

1

sinh z
.

These functions also satisfy a extensive set of identities, differentiation formulae,
and properties of inverse which are extensions of their real counterparts.
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12. Exercises

Problem 1. Use Corollary ?? to give an alternate proof of 8:
Let log1 : D1 → R and log2 : D2 → R be branches of logarithm. Let D =

D1 ∩ D2. If D is connected, then there exists an integer k ∈ Z such that for all
z ∈ D,

log2(z) = log1(z) + 2πki.

Solution. Since both are branches of logarithm,
d

dz
log1 =

d

dz
log2 =

1

z
. Since these

functions have the same derivative, they differ by a constant, that is, there exists
a constant C ∈ C such that log2(z) = log1(z) + C for all z ∈ D. Take exp of both
sides to see that

z = exp(log2(z)) = exp(log1(z) + C) = z exp(C).

Thus exp(C) = 1, so eRe(C) cis(Im(C)) = 1, so Re(C) = 0 and Im(C) = 2πk for
some k ∈ Z. This gives log2(z) = log1(z) + 2πki. �

Problem 2. Let arg : D → C be a branch of argument, and define log : D → C by
log(z) = ln |z|+ arg z. Show that log is a branch of logarithm. Does every branch
of logarithm arise in this way?

Problem 3. Let a ∈ C∗ and let expa(z) = exp(bz) be an instance of exponential
with base a. Find the domain and range of expa. Is expa periodic? If so, find its
period.

Problem 4. There are infinitely many branches of log. Does each produce a
different branch of powa? How does the answer to this question depend on a?

Problem 5. We could define eiz in these ways:

• eiz = exp(iz)
• eiz = exp(iz log(e))

Is there any difference in these definitions? Explain.

Problem 6. Show that, if z ∈ R, the definition above agrees with the standard
definition of sine and cosine on the reals.

Problem 7. Find the domain and range of sine and cosine. Are these functions
periodic? If so, find their periods.

Problem 8. Show that cos2 z + sin2 z = 1 for all z ∈ C.

Problem 9. Show that
d

dz
sin z = cos z.

Problem 10. Show that
d

dz
sinh z = cosh z and that

d

dz
cosh z = sinh z.

Problem 11. Show that cosh2 z − sinh2 z = 1.

Problem 12. Set w = cos z; then

w =
1

2
(eiz + e−iz).

Solve this for eiz, using the quadratic formula. Then come up with a formula of
arccos z.
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